Inversed Vernier effect based single-mode laser emission in coupled microdisks

نویسندگان

  • Meng Li
  • Nan Zhang
  • Kaiyang Wang
  • Jiankai Li
  • Shumin Xiao
  • Qinghai Song
چکیده

Recently, on-chip single-mode laser emissions in coupled microdisks have attracted considerable research attention due to their wide applications. While most of single-mode lasers in coupled microdisks or microrings have been qualitatively explained by either Vernier effect or inversed Vernier effect, none of them have been experimentally confirmed. Here, we studied the mechanism of single-mode laser operation in coupled microdisks. We found that the mode numbers had been significantly reduced to nearly single-mode within a large pumping power range from threshold to gain saturation. The detail laser spectra showed that the largest gain and the first lasing peak were mainly generated by one disk and the laser intensity was proportional to the wavelength detuning of two set of modes. The corresponding theoretical analysis showed that the experimental observations were dominated by internal coupling within one cavity, which was similar to the recently explored inversed Vernier effect in two coupled microrings. We believe our finding will be important for understanding the previous experimental findings and the development of on-chip single-mode laser.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dual-wavelength single-frequency laser emission in asymmetric coupled microdisks

The gain and loss in a microcavity laser play an important role for the modulation of laser spectrum. We show that dual-wavelength single mode lasing can be achieved in an asymmetric coupled system consisted of two size-mismatched microdisks. The amount of eigenmodes in this coupled-microdisk system is reduced relying on the Vernier effect. Then a single mode is selected to lase by controlling ...

متن کامل

Spectral engineering of bends and branches in microdisk coupled-resonator optical waveguides.

Rigorous simulations of bent and branched sections of coupled resonator optical waveguides (CROWs) composed of side-coupled whispering gallery (WG) mode microdisks are performed. Pre- and post-fabrication tuning capability of the designed structures is explored, and a novel concept of realization of tunable CROW-based routers and switches is introduced. The proposed tuning mechanism exploits th...

متن کامل

Cavity Q, mode volume, and lasing threshold in small diameter AlGaAs microdisks with embedded quantum dots.

The quality factor (Q), mode volume (V(eff)), and room-temperature lasing threshold of microdisk cavities with embedded quantum dots (QDs) are investigated. Finite element method simulations of standing wave modes within the microdisk reveal that Veff can be as small as 2(lambda/n)(3) while maintaining radiation-limited Qs in excess of 10(5). Microdisks of diameter 2 microm are fabricated in an...

متن کامل

Directional single-mode emission from coupled whispering gallery resonators realized by using ZnS microbelts.

Ring microcavities were formed by wrapping ZnS microbelts, which act as the waveguide and gain region of the microcavities on the surface of optical fibers. The ring microcavities with the formation of whispering gallery modes have lasing threshold lower (Q-factor higher) than that of the ZnS microbelts. The excitation of TM modes could also be suppressed by the ring geometries of ZnS microbelt...

متن کامل

Whispering-gallery modes and light emission from a Si-nanocrystal-based single microdisk resonator.

We report on visible light emission from Si-nanocrystal based optically active microdisk resonators. The room temperature photoluminescence (PL) from single microdisks shows the characteristic modal structure of whispering-gallery modes. The emission is both TE and TM-polarized in 300 nm thick microdisks, while thinner ones (135 nm) support only TE-like modes. Thinner disks have the advantage t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015